Original Article
Author Details :
Volume : 6, Issue : 3, Year : 2020
Article Page : 226-231
https://doi.org/10.18231/j.ijn.2020.043
Abstract
In advanced idiopathic Parkinson disease (PD), for targeting the subthalamic-nuclei deep brain stimulation (STN-DBS), the fusion MR and functional magnetic resonance imaging (MRI, fMRI) guided by computed axial tomography (CAT), positron emitted tomography (PET) functional imaging systems and recently DatScan are extensively applied, albeit, the MRI is continually unreachable for entity. The goal of this study was to detect whether the circuitous targeting of STN for DBS employing geometrical stereotactic functional frame based MRI, CAT and microneurosensor recording or microelectrode recording (MER) guidance which are effective and safe methods to establish the factors and parameters that offered and built to effectual outcome. The results showed that the circuitous targeting of STN-DBS employing stereotactic functional neurosurgical frame based CAT and MER in PD subjects were effectual and confined which is consistent with our hypothesis. Better symmetry of the fixation of frame resulted in better outcomes of the STN-DBS particularly when horizontal-deviation was 2mm and perpendicular-deviation was 1mm.
If the subjects cannot go through the direct imaging modality due to physical problems then circuitous method can be followed. Clinical relevance—in clinical settings fusion techniques is causal and causative and safe treatment to corroborate the factors and parameters that sets outcome. Using quantum computing, the cell imaging can be improved.
Keywords: Computed Axial Tomography (CAT), Deep Brain Stimulator (DBS), Magnetic Resonance Imaging (MRI), Microelectrode Recording (MER), Parkinson‘s Disease (PD), Subthalamic Nucleus (STN).
How to cite : Raju V R, Konda S, Balmuri K R, Raju B, Circuitous Goal of bSTN deep brain stimulator in parkinson disease: A study with fusion MRI guided by Computed Axial tomography and microneurosensor recording MER techniques. IP Indian J Neurosci 2020;6(3):226-231
This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Viewed: 1298
PDF Downloaded: 536