- Visibility 319 Views
- Downloads 389 Downloads
- Permissions
- DOI 10.18231/j.ijn.2025.017
-
CrossMark
- Citation
A review on recent advancements in artificial intelligence for the detection, monitoring, and treatment of brain cancers
Brain tumors, such as gliomas and glioblastomas, provide substantial diagnostic and therapeutic hurdles due to their heterogeneity, aggressive activity, and treatment resistance. Recent advancements in artificial intelligence (AI), notably machine learning (ML) and deep learning (DL), have transformed how brain tumors are diagnosed, tracked, and treated. AI applications in radiomics, histopathology, genomics, and multimodal data integration provide earlier diagnosis, improved prognosis, and more tailored treatment options. This study gives a complete overview of cutting-edge AI approaches utilized in neuro-oncology, emphasizing their integration into clinical workflows, advantages, and limits. Ethical concerns and the potential for AI-driven brain cancer treatment are also highlighted.
Keywords: Glioblastoma, Deep Learning, Radiomics, Neuro-oncology, Histopathology, Personalized Medicine, Liquid Biopsy.
References
- Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.
- Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella- Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.
- Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
- DeAngelis LM. Brain tumors. N Engl J Med. 2001 Jan 11;344(2):114-23.
- Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella- Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021;23(8):1231–51.
- Hayward RM, Patronas N, Baker EH, Vézina G, Albert PS, Warren KE. Inter-observer variability in the measurement of diffuse intrinsic pontine gliomas. J Neurooncol. 2008;90(1):57–61.
- Mahaley MS, Mettlin C, Natarajan N, Laws ER, Peace BB. National survey of patterns of care for brain-tumor patients. J Neurosurg. 1989;71(6):826–36.
- Sultan HH, Salem NM, Al-Atabany W. Multi-classification of brain tumor images using deep neural network. IEEE Access. 2019;7:69215–25.
- World Health Organization: WHO, “Cancer.” July 2019. Available online: https://www.who.int/health-topics/cancer.
- Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ. Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging. 2017;30(4):449-459.
- Kaifi, R. A Review of Recent Advances in Brain Tumor Diagnosis Based on AI-Based Classification. Diagnostics. 2023;13(18):3007.
- Kickingereder P, Bonekamp D, Nowosielski M, Kratz A, Sill M, Burth S, et al. Radiogenomics of Glioblastoma: Machine Learning- based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology. 2016;281(3):907–18.
- Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, et al. Corrigendum: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.
- Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A, et al. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv preprint arXiv. 2018:1811.02629.
- Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU- Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203–11.
- Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA. 2018;115(13):E2970–9.
- Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN. Deep learning in cancer pathology: A new generation of clinical biomarkers. Br J Cancer. 2021;124(4):686–96.
- Korfiatis P, Kline TL, Lachance DH, Parney IF, Buckner JC, Erickson BJ. Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status. J Digit Imaging. 2017;30(5):622–28.
- Zhang XM, Liang L, Liu L, Tang MJ. Graph Neural Networks and Their Current Applications in Bioinformatics. Front Genet. 2021;12:690049.
- Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.
- Gatto L, Franceschi E, Di Nunno V, Tosoni A, Lodi R, Brandes AA. Liquid Biopsy in Glioblastoma Management: From Current Research to Future Perspectives. Oncologist. 2021;26(10):865–78.
- Poursaeed, R, Mohammadzadeh M, Safaei AA. Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review. BMC Cancer. 2024;24:1581.
- Neri E, Aghakhanyan G, Zerunian M, Gandolfo N, Grassi R, Miele V, et al. SIRM expert group on Artificial Intelligence. Explainable AI in radiology: a white paper of the Italian Society of Medical and Interventional Radiology. Radiol Med. 2023;128(6):755–64. Dubey / IP Indian Journal of Neurosciences 2025;11(2):70-75 75
- Orringer DA, Pandian B, Niknafs YS, Hollon TC, Boyle J, Lewis S, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1:0027.
- Bibault JE, Giraud P, Burgun A. Big Data and machine learning in radiation oncology: State of the art and future prospects. Cancer Lett. 2016;382(1):110–7.
- Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188–94.
- Reyes M, Meier R, Pereira S, Silva CA, Dahlweid FM, von Tengg- Kobligk H, et al. On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiol Artif Intell. 2020;2(3):e190043.
- Luchini C, Pea A, Scarpa A. Artificial intelligence in oncology: current applications and future perspectives. Br J Cancer. 2022;126(1):4–9.
- Shoghli A, Darvish M, Sadeghian Y. Balancing Innovation and Privacy: Ethical Challenges in AI-Driven Healthcare. J Rev Med Sci. 20244(1):1-11.
How to Cite This Article
Vancouver
Dubey S. A review on recent advancements in artificial intelligence for the detection, monitoring, and treatment of brain cancers [Internet]. IP Indian J Neurosci. 2025 [cited 2025 Oct 02];11(2):70-75. Available from: https://doi.org/10.18231/j.ijn.2025.017
APA
Dubey, S. (2025). A review on recent advancements in artificial intelligence for the detection, monitoring, and treatment of brain cancers. IP Indian J Neurosci, 11(2), 70-75. https://doi.org/10.18231/j.ijn.2025.017
MLA
Dubey, Shivam. "A review on recent advancements in artificial intelligence for the detection, monitoring, and treatment of brain cancers." IP Indian J Neurosci, vol. 11, no. 2, 2025, pp. 70-75. https://doi.org/10.18231/j.ijn.2025.017
Chicago
Dubey, S.. "A review on recent advancements in artificial intelligence for the detection, monitoring, and treatment of brain cancers." IP Indian J Neurosci 11, no. 2 (2025): 70-75. https://doi.org/10.18231/j.ijn.2025.017